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Abstract. Non-uniform memory access (NUMA) architectures exhibit variable
memory access latencies that depend on the issuing core and the accessed mem-
ory location. To minimize an application’s memory access time, the accessed data
should be kept as close to the computation as possible. An promising strategy is to
deploy groups of threads that access the same data on neighboring cores and close
to the accessed data. This not only minimizes remote memory accesses latency
but also reduces the amount of accessed cache lines and the traffic incurred by the
cache coherence coherence protocol; however, finding and maintaining a good
thread group allocation is difficult. This paper presents a novel at-runtime tech-
nique that improves application performance through better data locality without
prior profiling runs. The presented technique accurately detects accessed memory
sections through low-overhead sampling. Sections that are frequently accessed on
a remote node are migrated to the local memory node. Migration of unused data
such as data streams is avoided by only copying sections that are expected to
yield a positive net gain.
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1 Introduction
The memory systems of computer systems are built around the fact that most programs
exhibit temporal and spatial data locality. A hierarchy of memories from small and fast
to large and slow provides low access latencies and high throughput by exploiting data
locality. To achieve maximum performance, a process’ working set should be kept in
nearby memories. In parallel applications, several threads form locality groups when
they access similar data objects. To support the placement of locality groups, NUMA
(Non-Uniform Memory Access) architectures provide information on the organization
of the physical memory hierarchy [3]. By harnessing this information, it is possible to
not only increase the efficiency of caches through improved data reuse but also to reduce
the communication overhead in the interconnection network. In other words, achieving
better locality increases cache utilization and reduces the memory access latency.

In NUMA architectures, the data access latency depends on the location of the core
that requests the data and the physical location of the data. Unlike in hardware-managed
caches, the placement of data pages in memory can be controlled in software; we can
thus exploit data locality by placing the accessed data in memory local to the core.
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Fig. 1. Illustration of the advantages of local vs. remote memory accesses.

Several studies have proposed techniques to increase data locality to mitigate the
cost of remote memory accesses. A common approach is to cluster the threads of an
application according to their affinity of shared data [4]. To decide the optimal memory
allocation policy, other techniques track memory allocation requests to identify memory
objects before profiling the accesses to them [2]. Other approaches aim at preventing
congestion in the interconnection network and at the memory controllers by balancing
the load and decide the placement of data at runtime [1]. One of the main challenges
is to avoid moving data that causes more overhead than benefit. An other difficulty
for at-runtime techniques concerns the lack of exact information on memory accesses
because they have to rely on sampling to keep the runtime overhead to a minimum.
Finally, moving data into local nodes often obstructs load balancing efforts; data should
thus be placed in consideration the utilization of memory nodes. All these challenges
render low-overhead at-runtime data placement and coordination difficult.

In this paper, we present a technique that can exploit data locality at runtime and
with low overhead. A history table is used to identify and migrate only data sections
that are expected to yield a net benefit. We employ a technique that is able to infer
used or likely-to-be-accessed-next sections of memory objects with a small number of
samples and without the need to trace calls to specific routines. Finally, we introduce a
placement technique that considers both locality and congestion.

An evaluation on a 72-core Intel NUMA system with 25 real-world programs from
three benchmark suites shows that, on average, our migration policy is able to reduce
the traffic caused by page movements by 70%. By restoring missing sections of memory
objects, it was possible to achieve placements of steady state where threads and data are
consistently settled earlier. As a result, the proposed techniques increases application
performance by up to 25% and 10% on average over all evaluated parallel programs.

2 Design

The presented technique focuses on (1) relocating processes groups close to their data
and (2) balancing the load of requests to the components of the memory subsystem. The
thread and data placement is re-evaluated periodically every 100ms. Memory request
events such as the number of L2 cache misses are sampled using the Precise Event-
Based Sampling (PEBS) capabilities of the hardware performance monitoring unit.
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2.1 Inference of Memory Objects

Sampling every nth cache miss does not reveal the full memory access pattern of a
group of threads and, in turn, lead to the identification of several small memory seg-
ments that are actually part of a single, larger object. To compensate for missing sam-
ples, the presented technique speculatively fills gaps between identified memory seg-
ments to capture the entire memory object. The heuristic is based on the idea that the
intervals between the addresses of the same memory objects tend to be smaller than
those to different memory objects.

The average stride between sampled addresses on the heap segment is obtained by
dividing the distance between the largest and smallest address by the number of sampled
addresses. If all the intervals between addresses in a sequence of sampled addresses are
smaller than the average stride, then the entire range is considered a contiguous region
of a memory object. To reduce the computational overhead, the minimal detection unit
of a memory region is identical to the size of a physical page or larger.

2.2 Selection of Active Data for Migration

Chunks obtained by inference for sections of memory objects are candidate that can be
chosen as active data. In this context, selected chunks represent the working set that are
likely to be accessed again in the future, that is active data but not dead data such as data
stream. The history table constituted by hash table preserves the previous access history
of chunks identified by logical addresses. Through this table, the history of existence of
the chunks at each epochs is examined. If the chunk has been accessed previously, the
chunk is selected as candidate of migration and a counter which indicates how many
times the corresponding chunk have existed is incremented. Or if it is the first time to
access, the chunk is first considered as inactive data and it is registered in the history
table. Also, chunks that are not accessed within a certain number of epochs are evicted
from the history table treating as aged. In addition, the higher the number of times a
chunk have existed, which indicated by a corresponding counter, the higher priority is
assigned to move it first.

3 Evaluation
We evaluate the presented technique on a 72-core (4-node) Intel Xeon E7-8870 v3
processor with 512 GiB of DRAM. All experiments were performed with NUMA-
balancing turned off in the Linux kernel to minimize interference between our tech-
nique and the operating system’s NUMA balancer. We evaluate 25 benchmarks from
the NPB, Parsec and Rodinia benchmark suites.

The results are shown in Figure 2. The execution time of all benchmarks is nor-
malized to standard execution on Linux. We plot the runtime for data migration with
(Selective) and without (Unselective) the heuristic to identify memory objects.
On average, the presented technique achieves a 10% shorter execution time with in-
dividual benchmarks running up to 25% faster. Also noteworthy is the fact that the
maximum slowdown for applications that do not profit from the presented technique is
consistently below 10% and that all overhead of the presented technique is included in
the presented results.
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Fig. 2. Comparison of performance with proposed techniques.

4 Conclusion
This paper has presented a low-overhead, at-runtime approach to data migration for
higher performance in NUMA architecture. Objects to be migrated are identified through
low-overhead sampling, single, small regions extended into regions through a heuristic.
By selecting data objects to be moved based on the likelihood of their reuse, redundant
migrations can be avoided. Finally, since localization can destroy the load balance of
the memory system and cause congestion that results in performance degradation, our
technique balances data across multiple memory nodes.

Experiments with 25 parallel applications show an average performance improve-
ment of 10% and a reduction of the number of data migrations between memory nodes
by 70%. For several applications, a 20% or higher performance improvement is ob-
tained, demonstrating that low-overhead data placement techniques are an effective way
for significant performance gains on existing hardware.
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